Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Rev Proteomics ; 18(10): 845-861, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34607525

RESUMO

INTRODUCTION: Laser Capture Microdissection (LCM) uses a laser to isolate, or capture, specific cells of interest in a complex heterogeneous tissue section, under direct microscopic visualization. Recently, there has been a surge of publications using LCM for tissue spatial molecular profiling relevant to a wide range of research topics. AREAS COVERED: We summarize the many advances in tissue Laser Capture Proteomics (LCP) using mass spectrometry for discovery, and protein arrays for signal pathway network mapping. This review emphasizes: a) transition of LCM phosphoproteomics from the lab to the clinic for individualized cancer therapy, and b) the emerging frontier of LCM single cell molecular analysis combining proteomics with genomic, and transcriptomic analysis. The search strategy was based on the combination of MeSH terms with expert refinement. EXPERT OPINION: LCM is complemented by a rich set of instruments, methodology protocols, and analytical A.I. (artificial intelligence) software for basic and translational research. Resolution is advancing to the tissue single cell level. A vision for the future evolution of LCM is presented. Emerging LCM technology is combining digital and AI guided remote imaging with automation, and telepathology, to a achieve multi-omic profiling that was not previously possible.


Assuntos
Medicina de Precisão , Proteômica , Inteligência Artificial , Microdissecção e Captura a Laser , Lasers
2.
Mol Cancer Res ; 14(9): 795-804, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353028

RESUMO

UNLABELLED: Although the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here, the development of an ultrasensitive laser capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable preneoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, and expression patterns compared with normal mucosa from each patient. By comparing gene expression patterns among groups, an increase in a number of proinflammatory NF-κB target genes was identified that was specific to ACF epithelium, including TIMP1, RELA, and RELB Distinct transcriptional changes associated with each somatic mutation were observed and a subset of ACF display BRAF(V600E)-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal-appearing stroma, with an upregulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3(+) T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-κB, activated stromal fibroblasts, and lymphocyte infiltration. IMPLICATIONS: Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. Mol Cancer Res; 14(9); 795-804. ©2016 AACR.


Assuntos
Comunicação Celular/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Senescência Celular/genética , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia , Estadiamento de Neoplasias , Células Estromais/patologia , Transcrição Gênica , Transcriptoma , Regulação para Cima
3.
J Mol Diagn ; 9(1): 70-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17251338

RESUMO

The establishment of a reliable method for using RNA from formalin-fixed, paraffin-embedded (FFPE) tissue would provide an opportunity to obtain novel gene expression data from the vast amounts of archived tissue. A custom-designed 22,000 oligonucleotide array was used in the present study to compare the gene expression profile of colonic epithelial cells isolated by laser capture microdissection from FFPE-archived samples with that of the same cell population from matched frozen samples, the preferred source of RNA. Total RNA was extracted from FFPE tissues, amplified, and labeled using the Paradise Reagent System. The quality of the input RNA was assessed by the Bioanalyzer profile, reverse transcriptase-polymerase chain reaction, and agarose gel electrophoresis. The results demonstrate that it is possible to obtain reliable microarray data from FFPE samples using RNA acquired by laser capture microdissection. The concordance between matched FFPE and frozen samples was evaluated and expressed as a Pearson's correlation coefficient, with values ranging from 0.80 to 0.97. The presence of ribosomal RNA peaks in FFPE-derived RNA was reflected by a high correlation with paired frozen samples. A set of practical recommendations for evaluating the RNA integrity and quality in FFPE samples is reported.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/isolamento & purificação , Preservação de Tecido/métodos , Colo/citologia , Primers do DNA , Eletroforese em Gel de Ágar , Células Epiteliais/química , Estudos de Avaliação como Assunto , Fixadores , Formaldeído , Humanos , Lasers , Microdissecção , Inclusão em Parafina , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...